Campbell, M., Hoane, A. J. Jr & Hsu, F.-h. Deep Blue. Artif. Intell. 134, 57–83 (2002).
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013).
Machado, M. et al. Revisiting the arcade learning environment: evaluation protocols and open problems for general agents. J. Artif. Intell. Res. 61, 523–562 (2018).
Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144 (2018).
Schaeffer, J. et al. A world championship caliber checkers program. Artif. Intell. 53, 273–289 (1992).
Brown, N. & Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science 359, 418–424 (2018).
Moravčík, M. et al. Deepstack: expert-level artificial intelligence in heads-up no-limit poker. Science 356, 508–513 (2017).
Vlahavas, I. & Refanidis, I. Planning and Scheduling Technical Report (EETN, 2013).
Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (MIT Press, 2018).
Deisenroth, M. & Rasmussen, C. PILCO: a model-based and data-efficient approach to policy search. In Proc. 28th International Conference on Machine Learning, ICML 2011 465–472 (Omnipress, 2011).
Heess, N. et al. Learning continuous control policies by stochastic value gradients. In NIPS’15: Proc. 28th International Conference on Neural Information Processing Systems Vol. 2 (eds Cortes, C. et al.) 2944–2952 (MIT Press, 2015).
Levine, S. & Abbeel, P. Learning neural network policies with guided policy search under unknown dynamics. Adv. Neural Inf. Process. Syst. 27, 1071–1079 (2014).
Hafner, D. et al. Learning latent dynamics for planning from pixels. Preprint at https://arxiv.org/abs/1811.04551 (2018).
Kaiser, L. et al. Model-based reinforcement learning for atari. Preprint at https://arxiv.org/abs/1903.00374 (2019).
Buesing, L. et al. Learning and querying fast generative models for reinforcement learning. Preprint at https://arxiv.org/abs/1802.03006 (2018).
Espeholt, L. et al. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. In Proc. International Conference on Machine Learning, ICML Vol. 80 (eds Dy, J. & Krause, A.) 1407–1416 (2018).
Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J. & Munos, R. Recurrent experience replay in distributed reinforcement learning. In International Conference on Learning Representations (2019).
Horgan, D. et al. Distributed prioritized experience replay. In International Conference on Learning Representations (2018).
Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming 1st edn (John Wiley & Sons, 1994).
Coulom, R. Efficient selectivity and backup operators in Monte-Carlo tree search. In International Conference on Computers and Games 72–83 (Springer, 2006).
Wahlström, N., Schön, T. B. & Deisenroth, M. P. From pixels to torques: policy learning with deep dynamical models. Preprint at http://arxiv.org/abs/1502.02251 (2015).
Watter, M., Springenberg, J. T., Boedecker, J. & Riedmiller, M. Embed to control: a locally linear latent dynamics model for control from raw images. In NIPS’15: Proc. 28th International Conference on Neural Information Processing Systems Vol. 2 (eds Cortes, C. et al.) 2746–2754 (MIT Press, 2015).
Ha, D. & Schmidhuber, J. Recurrent world models facilitate policy evolution. In NIPS’18: Proc. 32nd International Conference on Neural Information Processing Systems (eds Bengio, S. et al.) 2455–2467 (Curran Associates, 2018).
Gelada, C., Kumar, S., Buckman, J., Nachum, O. & Bellemare, M. G. DeepMDP: learning continuous latent space models for representation learning. Proc. 36th International Conference on Machine Learning: Volume 97 of Proc. Machine Learning Research (eds Chaudhuri, K. & Salakhutdinov, R.) 2170–2179 (PMLR, 2019).
van Hasselt, H., Hessel, M. & Aslanides, J. When to use parametric models in reinforcement learning? Preprint at https://arxiv.org/abs/1906.05243 (2019).
Tamar, A., Wu, Y., Thomas, G., Levine, S. & Abbeel, P. Value iteration networks. Adv. Neural Inf. Process. Syst. 29, 2154–2162 (2016).
Silver, D. et al. The predictron: end-to-end learning and planning. In Proc. 34th International Conference on Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.) 3191–3199 (JMLR, 2017).
Farahmand, A. M., Barreto, A. & Nikovski, D. Value-aware loss function for model-based reinforcement learning. In Proc. 20th International Conference on Artificial Intelligence and Statistics: Volume 54 of Proc. Machine Learning Research (eds Singh, A. & Zhu, J) 1486–1494 (PMLR, 2017).
Farahmand, A. Iterative value-aware model learning. Adv. Neural Inf. Process. Syst. 31, 9090–9101 (2018).
Farquhar, G., Rocktaeschel, T., Igl, M. & Whiteson, S. TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning. In International Conference on Learning Representations (2018).
Oh, J., Singh, S. & Lee, H. Value prediction network. Adv. Neural Inf. Process. Syst. 30, 6118–6128 (2017).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).
He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks. In 14th European Conference on Computer Vision 630–645 (2016).
Hessel, M. et al. Rainbow: combining improvements in deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).
Schmitt, S., Hessel, M. & Simonyan, K. Off-policy actor-critic with shared experience replay. Preprint at https://arxiv.org/abs/1909.11583 (2019).
Azizzadenesheli, K. et al. Surprising negative results for generative adversarial tree search. Preprint at http://arxiv.org/abs/1806.05780 (2018).
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
Open, A. I. OpenAI five. OpenAI https://blog.openai.com/openai-five/ (2018).
Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).
Jaderberg, M. et al. Reinforcement learning with unsupervised auxiliary tasks. Preprint at https://arxiv.org/abs/1611.05397 (2016).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
Kocsis, L. & Szepesvári, C. Bandit based Monte-Carlo planning. In European Conference on Machine Learning 282–293 (Springer, 2006).
Rosin, C. D. Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 61, 203–230 (2011).
Schadd, M. P., Winands, M. H., Van Den Herik, H. J., Chaslot, G. M.-B. & Uiterwijk, J. W. Single-player Monte-Carlo tree search. In International Conference on Computers and Games 1–12 (Springer, 2008).
Pohlen, T. et al. Observe and look further: achieving consistent performance on Atari. Preprint at https://arxiv.org/abs/1805.11593 (2018).
Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. In International Conference on Learning Representations (2016).
Cloud TPU. Google Cloud https://cloud.google.com/tpu/ (2019).
Coulom, R. Whole-history rating: a Bayesian rating system for players of time-varying strength. In International Conference on Computers and Games 113–124 (2008).
Nair, A. et al. Massively parallel methods for deep reinforcement learning. Preprint at https://arxiv.org/abs/1507.04296 (2015).
Lanctot, M. et al. OpenSpiel: a framework for reinforcement learning in games. Preprint at http://arxiv.org/abs/1908.09453 (2019).
Note: Changes to the Full-Text RSS free service
Article From & Read More ( Mastering Atari, Go, chess and shogi by planning with a learned model - Nature.com )https://ift.tt/37JOdjp
Technology
Bagikan Berita Ini
0 Response to "Mastering Atari, Go, chess and shogi by planning with a learned model - Nature.com"
Post a Comment